Document Type
Article
Publication Date
2016
Abstract
We define and study the counterpart of the Wiener algebra in the quaternionic setting, both for the discrete and continuous case. We prove a Wiener-Lévy type theorem and a factorization theorem. We give applications to Toeplitz and Wiener-Hopf operators.
Recommended Citation
D. Alpay, F. Colombo,D. Kimsey and I. Sabadini. Wiener algebra for the quaternions. Mediterrean Journal of Mathematics, vol. 13 (2016), no 2, 2463-2482.
Peer Reviewed
1
Copyright
Springer
Included in
Algebra Commons, Discrete Mathematics and Combinatorics Commons, Other Mathematics Commons
Comments
This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Mediterrean Journal of Mathematics, volume 13, issue 2, in 2016 following peer review. The final publication is available at Springer via DOI: 10.1007/s00009-015-0634-z