Document Type
Article
Publication Date
10-12-2016
Abstract
The maximum selection principle allows to give expansions, in an adaptive way, of functions in the Hardy space H2" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">H2H2 of the disk in terms of Blaschke products. The expansion is specific to the given function. Blaschke factors and products have counterparts in the unit ball of CN" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">CNCN, and this fact allows us to extend in the present paper the maximum selection principle to the case of functions in the Drury–Arveson space of functions analytic in the unit ball of CN" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">CNCN. This will give rise to an algorithm which is a variation in this higher dimensional case of the greedy algorithm. We also introduce infinite Blaschke products in this setting and study their convergence.
Recommended Citation
Alpay, D., Colombo, F., Qian, T., Sabadini, I., 2016. Adaptative Decomposition: The Case of the Drury-Arveson Space. Journal of Fourier Analysis and Applications. doi:10.1007/s00041-016-9508-4
Peer Reviewed
1
Copyright
Springer
Comments
This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Journal of Fourier Analysis and Applications in 2016 following peer review. The final publication is available at Springer via http://dx.doi.org/10.1007/s00041-016-9508-4.