"The Spectral Theorem for Unitary Operators Based on the S-Spectrum" by Daniel Alpay, Fabrizio Colombo et al.
 

Document Type

Article

Publication Date

2016

Abstract

The quaternionic spectral theorem has already been considered in the literature, see e.g. [22], [31], [32], however, except for the finite dimensional case in which the notion of spectrum is associated to an eigenvalue problem, see [21], it is not specified which notion of spectrum underlies the theorem.

In this paper we prove the quaternionic spectral theorem for unitary operators using the S-spectrum. In the case of quaternionic matrices, the S-spectrum coincides with the right-spectrum and so our result recovers the well known theorem for matrices. The notion of S-spectrum is relatively new, see [17], and has been used for quaternionic linear operators, as well as for n-tuples of not necessarily commuting operators, to define and study a noncommutative versions of the Riesz-Dunford functional calculus.

The main tools to prove the spectral theorem for unitary operators are the quaternionic version of Herglotz’s theorem, which relies on the new notion of q-positive measure, and quaternionic spectral measures, which are related to the quaternionic Riesz projectors defined by means of the S-resolvent operator and the S-spectrum. The results in this paper restore the analogy with the complex case in which the classical notion of spectrum appears in the Riesz-Dunford functional calculus as well as in the spectral theorem.

Comments

This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Milan Journal of Mathematics, volume 84, in 2016 following peer review. The final publication is available at Springer via DOI: 10.1007/s00032-015-0249-7

Peer Reviewed

1

Copyright

Springer

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 41
  • Usage
    • Downloads: 673
    • Abstract Views: 8
  • Captures
    • Readers: 6
see details

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.