Document Type

Article

Publication Date

11-21-2023

Abstract

Determining the sources of water provisioning streams, soils, and vegetation can provide important insights into the water that sustains critical ecosystem functions now and how those functions may be expected to respond given projected changes in the global hydrologic cycle. We developed multi-year time series of water isotope ratios (δ18O and δ2H) based on twice-monthly collections of precipitation, lysimeter, and tree branch xylem waters from a seasonally dry tropical montane cloud forest in the southeastern Andes mountains of Peru. We then used this information to determine indices of the seasonal origins, the young water fractions (Fyw), and the new water fractions (Fnew) of soil, stream, and tree water. There was no evidence for intra-annual variation in the seasonal origins of stream water and lysimeter water from 1 m depth, both of which were predominantly comprised of wet-season precipitation even during the dry seasons. However, branch xylem waters demonstrated an intra-annual shift in seasonal origin: xylem waters were comprised of wet-season precipitation during the wet season and dry-season precipitation during the dry season. The young water fractions of lysimeter (< 15 %) and stream (5 %) waters were lower than the young water fraction (37 %) in branch xylem waters. The new water fraction (an indicator of water ≤ 2 weeks old in this study) was estimated to be 12 % for branch xylem waters, while there was no significant evidence for new water in stream or lysimeter waters from 1 m depth. Our results indicate that the source of water for trees in this system varied seasonally, such that recent precipitation may be more immediately taken up by shallow tree roots. In comparison, the source of water for soils and streams did not vary seasonally, such that precipitation may mix and reside in soils and take longer to transit into the stream. Our insights into the seasonal origins and ages of water in soils, streams, and vegetation in this humid tropical montane cloud forest add to understanding of the mechanisms that govern the partitioning of water moving through different ecosystems.

Comments

This article was originally published in Hydrology and Earth System Sciences , volume 27, in 2023. https://doi.org/10.5194/hess-27-4173-2023

hess-27-4173-2023-supplement.pdf (12181 kB)
Supplement

Copyright

The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.