Document Type
Article
Publication Date
3-12-2023
Abstract
Aerosols play an important role in the earth's environment across the globe through their involvement in various earth system cycles. The change in the aerosol properties may cause short and long-term impacts, the knowledge of such changes is useful in the estimation of the pollution sources of any region. We have carried out the analysis of the aerosols' optical and radiative properties using AERONET station data from 2018 to 2021 in Dibrugarh City. The higher Aerosol Optical Depth (AOD) values during winter and pre-monsoon months indicate high anthropogenic activities, and biomass burning in Dibrugarh. The impact of various sources and daily meteorological parameters help in understanding the diurnal variations of the AOD, Ångström Exponent (AE), and column water (CW). Fine aerosol fractions dominate the aerosol volume, but sometimes the long-range transport of dust affects aerosol properties during pre-monsoon months (MAM). MODIS-derived AOD and AERONET AOD values show a good correlation, with R2 = 0.68. The highest volume of the aerosols reaches up to 0.11 µm3 µm–2 during pre-monsoon months, whereas it lies below 0.05 µm3 µm–2 in other seasons. SSA values indicate the presence of scattering aerosols but in 2020, a sudden decline in the SSA values shows a strong rise in the absorbing aerosols. Throughout the study period (2018–2021), the positive radiative forcing indicates a rise in atmospheric heating.
Recommended Citation
Chauhan, A., Acharjee, S., Singh, R.P., Holben, B. (2023). Dynamic Characteristics of Aerosol Optical Properties over Dibrugarh City in the North-Eastern Indian Region during 2018–2021. Aerosol Air Qual. Res. 23, 220320. https://doi.org/10.4209/aaqr.220320
Supplemental material
Copyright
The authors
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Included in
Atmospheric Sciences Commons, Climate Commons, Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons
Comments
This article was originally published in Aerosol and Atmospheric Chemistry, volume 23, issue 6, in 2023. https://doi.org/10.4209/aaqr.220320