Document Type
Article
Publication Date
5-24-2005
Abstract
Aminoacyl-tRNA synthetase-containing complexes have been identified in different eukaryotes, and their existence has also been suggested in some Archaea. To investigate interactions involving aminoacyl-tRNA synthetases in Archaea, we undertook a yeast two-hybrid screen for interactions between Methanothermobacter thermautotrophicus proteins using prolyl-tRNA synthetase (ProRS) as the bait. Interacting proteins identified included components of methanogenesis, protein-modifying factors, and leucyl-tRNA synthetase (LeuRS). The association of ProRS with LeuRS was confirmed in vitro by native gel electrophoresis and size exclusion chromatography. Determination of the steady-state kinetics of tRNAPro charging showed that the catalytic efficiency (kcat/Km) of ProRS increased 5-fold in the complex with LeuRS compared with the free enzyme, whereas the Km for proline was unchanged. No significant changes in the steady-state kinetics of LeuRS aminoacylation were observed upon the addition of ProRS. These findings indicate that ProRS and LeuRS associate in M. thermautotrophicus and suggest that this interaction contributes to translational fidelity by enhancing tRNA aminoacylation by ProRS.
Recommended Citation
Prætorius-Ibba, M., Rogers, T.E., Samson, R., Kelman, Z. and Ibba, M. (2005) Association between archaeal prolyl- and leucyl-tRNA synthetases enhances tRNAPro aminoacylation. J. Biol. Chem. 280, 26099-26104. https://doi.org/10.1074/jbc.M503539200
Copyright
American Society for Biochemistry and Molecular Biology
Included in
Amino Acids, Peptides, and Proteins Commons, Biochemistry Commons, Cellular and Molecular Physiology Commons, Molecular Biology Commons, Nucleic Acids, Nucleotides, and Nucleosides Commons, Other Biochemistry, Biophysics, and Structural Biology Commons
Comments
This article was originally published in Journal of Biological Chemistry, volume 280, in 2005. https://doi.org/10.1074/jbc.M503539200