Document Type
Article
Publication Date
11-18-2005
Abstract
Accurate selection of amino acids is essential for faithful translation of the genetic code. Errors during amino acid selection are usually corrected by the editing activity of aminoacyl-tRNA synthetases such as phenylalanyl-tRNA synthetases (PheRS), which edit misactivated tyrosine. Comparison of cytosolic and mitochondrial PheRS from the yeast Saccharomyces cerevisiae suggested that the organellar protein might lack the editing activity. Yeast cytosolic PheRS was found to contain an editing site, which upon disruption abolished both cis and trans editing of Tyr-tRNAPhe. Wild-type mitochondrial PheRS lacked cis and trans editing and could synthesize Tyr-tRNAPhe, an activity enhanced in active site variants with improved tyrosine recognition. Possible trans editing was investigated in isolated mitochondrial extracts, but no such activity was detected. These data indicate that the mitochondrial protein synthesis machinery lacks the tyrosine proofreading activity characteristic of cytosolic translation. This difference between the mitochondria and the cytosol suggests that either organellar protein synthesis quality control is focused on another step or that translation in this compartment is inherently less accurate than in the cytosol.
Recommended Citation
Roy, H., Ling, J., Alfonzo, J.D. and Ibba, M. (2005) Loss of editing activity during the evolution of mitochondrial phenylalanyl-tRNA synthetase. J. Biol. Chem. 280, 38186-38192. https://doi.org/10.1074/jbc.M508281200
Copyright
American Society for Biochemistry and Molecular Biology
Included in
Amino Acids, Peptides, and Proteins Commons, Biochemistry Commons, Cellular and Molecular Physiology Commons, Molecular Biology Commons, Nucleic Acids, Nucleotides, and Nucleosides Commons, Other Biochemistry, Biophysics, and Structural Biology Commons
Comments
This article was originally published in Journal of Biological Chemistry, volume 280, in 2005. https://doi.org/10.1074/jbc.M508281200