Document Type
Article
Publication Date
9-29-2022
Abstract
In this study, we performed all-atom MD simulations of RBD–ACE2 complexes for BA.1, BA.1.1, BA.2, and BA.3 Omicron subvariants, conducted a systematic mutational scanning of the RBD–ACE2 binding interfaces and analysis of electrostatic effects. The binding free energy computations of the Omicron RBD–ACE2 complexes and comprehensive examination of the electrostatic interactions quantify the driving forces of binding and provide new insights into energetic mechanisms underlying evolutionary differences between Omicron variants. A systematic mutational scanning of the RBD residues determines the protein stability centers and binding energy hotpots in the Omicron RBD–ACE2 complexes. By employing the ensemble-based global network analysis, we propose a community-based topological model of the Omicron RBD interactions that characterized functional roles of the Omicron mutational sites in mediating non-additive epistatic effects of mutations. Our findings suggest that non-additive contributions to the binding affinity may be mediated by R493, Y498, and Y501 sites and are greater for the Omicron BA.1.1 and BA.2 complexes that display the strongest ACE2 binding affinity among the Omicron subvariants. A network-centric adaptation model of the reversed allosteric communication is unveiled in this study, which established a robust connection between allosteric network hotspots and potential allosteric binding pockets. Using this approach, we demonstrated that mediating centers of long-range interactions could anchor the experimentally validated allosteric binding pockets. Through an array of complementary approaches and proposed models, this comprehensive and multi-faceted computational study revealed and quantified multiple functional roles of the key Omicron mutational site R493, R498, and Y501 acting as binding energy hotspots, drivers of electrostatic interactions as well as mediators of epistatic effects and long-range communications with the allosteric pockets.
Recommended Citation
Verkhivker, G.; Agajanian, S.; Kassab, R.; Krishnan, K. Probing Mechanisms of Binding and Allostery in the SARS-CoV-2 Spike Omicron Variant Complexes with the Host Receptor: Revealing Functional Roles of the Binding Hotspots in Mediating Epistatic Effects and Communication with Allosteric Pockets. Int. J. Mol. Sci. 2022, 23, 11542. https://doi.org/10.3390/ijms231911542
Peer Reviewed
1
Copyright
The authors
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
- Citations
- Citation Indexes: 18
- Usage
- Downloads: 44
- Abstract Views: 5
- Captures
- Readers: 9
- Mentions
- Blog Mentions: 1
Included in
Computational Chemistry Commons, Epidemiology Commons, Medicinal-Pharmaceutical Chemistry Commons, Virus Diseases Commons
Comments
This article was originally published in International Journal of Molecular Sciences, volume 23, in 2022. https://doi.org/10.3390/ijms231911542
This scholarship is part of the Chapman University COVID-19 Archives.