Document Type

Article

Publication Date

2015

Abstract

The S-functional calculus is a functional calculus for (n + 1)-tuples of non necessarily commuting operators that can be considered a higher dimensional version of the classical Riesz-Dunford functional calculus for a single operator. In this last calculus, the resolvent equation plays an important role in the proof of several results. Associated with the S-functional calculus there are two resolvent operators: the left S−1 L (s, T ) and the right one S−1 R (s, T ), where s = (s0, s1, . . . , sn) ∈ Rn+1 and T = (T0, T1, . . . , Tn) is an (n + 1)-tuple of non commuting operators. These two S-resolvent operators satisfy the S-resolvent equations S−1 L (s, T )s − TS−1 L (s, T ) = I, and sS−1 R (s, T )−S−1 R (s, T )T = I, respectively, where I denotes the identity operator. These equations allows to prove some properties of the S-functional calculus. In this paper we prove a new resolvent equation for the S-functional calculus which is the analogue of the classical resolvent equation. It is interesting to note that the equation involves both the left and the right S-resolvent operators simultaneously.

Comments

This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Journal of Geometric Analysis, volume 25, issue 3, in 2015 following peer review. The final publication is available at Springer via DOI: 10.1007/s12220-014-9499-9

Peer Reviewed

1

Copyright

Springer

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.