Document Type

Article

Publication Date

2015

Abstract

A classical theorem of Herglotz states that a function n↦r(n) from Z into Cs×s is positive definite if and only there exists a Cs×s-valued positive measure dμ on [0,2π] such that r(n)=∫2π0eintdμ(t)for n∈Z. We prove a quaternionic analogue of this result when the function is allowed to have a number of negative squares. A key tool in the argument is the theory of slice hyperholomorphic functions, and the representation of such functions which have a positive real part in the unit ball of the quaternions. We study in great detail the case of positive definite functions.

Comments

NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Mathematical Analysis and Applications. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Mathematical Analysis and Applications, volume 421, in 2015. DOI: 10.1016/j.jmaa.2014.07.025

The Creative Commons license below applies only to this version of the article.

Peer Reviewed

1

Copyright

Elsevier

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.