Document Type
Article
Publication Date
10-24-2018
Abstract
Mechanical signaling involved in molecular interactions lies at the heart of materials science and biological systems, but the mechanisms involved are poorly understood. Here we use nanomechanical sensors and intact human cells to provide unique insights into the signaling pathways of connectivity networks, which deliver the ability to probe cells to produce biologically relevant, quantifiable and reproducible signals. We quantify the mechanical signals from malignant cancer cells, with 10 cells per ml in 1000-fold excess of non-neoplastic human epithelial cells. Moreover, we demonstrate that a direct link between cells and molecules creates a continuous connectivity which acts like a percolating network to propagate mechanical forces over both short and long length-scales. The findings provide mechanistic insights into how cancer cells interact with one another and with their microenvironments, enabling them to invade the surrounding tissues. Further, with this system it is possible to understand how cancer clusters are able to co-ordinate their migration through narrow blood capillaries.
Recommended Citation
Patil SB, Al-Jehani RM, Etayash H, et al. Modified cantilever arrays improve sensitivity and reproducibility of nanomechanical sensing in living cells. Commun Biol. 2018;1:175. doi: 10.1038/s42003-018-0179-3
Copyright
The authors
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Included in
Cancer Biology Commons, Cell Anatomy Commons, Cell Biology Commons, Cellular and Molecular Physiology Commons, Nanotechnology Commons, Other Cell and Developmental Biology Commons
Comments
This article was originally published in Communications Biology, volume 1, in 2018. DOI: 10.1038/s42003-018-0179-3