Document Type
Article
Publication Date
2017
Abstract
Cancer-targeting peptides as ligands for targeted delivery of anticancer drugs or drug carriers have the potential to significantly enhance the selectivity and the therapeutic benefit of current chemotherapeutic agents. Identification of tumor-specific biomarkers like integrins, aminopeptidase N, and epidermal growth factor receptor as well as the popularity of phage display techniques along with synthetic combinatorial methods used for peptide design and structure optimization have fueled the advancement and application of peptide ligands for targeted drug delivery and tumor detection in cancer treatment, detection and guided therapy. Although considerable preclinical data have shown remarkable success in the use of tumor targeting peptides, peptides generally suffer from poor pharmacokinetics, enzymatic instability, and weak receptor affinity, and they need further structural modification before successful translation to clinics is possible. The current review gives an overview of the different engineering strategies that have been developed for peptide structure optimization to confer selectivity and stability. We also provide an update on the methods used for peptide ligand identification, and peptide-receptor interactions. Additionally, some applications for the use of peptides in targeted delivery of chemotherapeutics and diagnostics over the past 5 years are summarized.
Recommended Citation
Soudy R, Byeon N, Raghuwanshi Y, Ahmed S, Lavasanifar A, Kaur K. Engineered peptides for applications in cancer-targeted drug delivery and tumor detection. Mini Rev Med Chem.. 2017;17(18):1696–1712. doi: 10.2174/1389557516666160219121836
Copyright
Bentham Science Publishers
Included in
Amino Acids, Peptides, and Proteins Commons, Cancer Biology Commons, Chemical Actions and Uses Commons, Medicinal and Pharmaceutical Chemistry Commons, Other Pharmacy and Pharmaceutical Sciences Commons, Pharmaceutics and Drug Design Commons
Comments
This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Mini-Reviews in Medicinal Chemistry, volume 17, issue 18, in 2017 following peer review. The definitive publisher-authenticated version is available online at DOI: 10.2174/1389557516666160219121836.