Document Type
Article
Publication Date
1-2017
Abstract
Introduction: Amylin receptor serves as a portal for the expression of deleterious effects of amyloid b-protein (Ab), a key pathologic hallmark of Alzheimer’s disease. Previously, we showed that AC253, an amylin receptor antagonist, is neuroprotective against Ab toxicity in vitro and abrogates Ab-induced impairment of hippocampal long-term potentiation.
Methods: Amyloid precursor protein–overexpressing TgCRND8 mice received intracerebroventricularly AC253 for 5 months. New cyclized peptide cAC253 was synthesized and administered intraperitoneally three times a week for 10 weeks in the same mouse model. Cognitive functions were monitored, and pathologic changes were quantified biochemically and immunohistochemically.
Results: AC253, when administered intracerebroventricularly, improves spatial memory and learning, increases synaptic integrity, reduces microglial activation without discernible adverse effects in TgCRND8 mice. cAC253 demonstrates superior brain permeability, better proteolytic stability, and enhanced binding affinity to brain amylin receptors after a single intraperitoneal injection. Furthermore, cAC253 administered intraperitoneally also demonstrates improvement in spatial memory in TgCRND8 mice.
Discussion: Amylin receptor is a therapeutic target for Alzheimer’s disease and represents a diseasemodifying therapy for this condition.
Recommended Citation
Soudy R, Patel A, Fu W, et al. Cyclic AC253, a novel amylin receptor antagonist, improves cognitive deficits in a mouse model of Alzheimer’s disease. Alzheimers Dement (N Y). 2017;3(1):44–56. doi: 10.1016/j.trci.2016.11.005
Copyright
The authors
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Included in
Amino Acids, Peptides, and Proteins Commons, Animals Commons, Medical Neurobiology Commons, Nervous System Diseases Commons, Neurology Commons, Neurosciences Commons
Comments
This article was originally published in Alzheimer’s & Dementia: Translational Research & Clinical Interventions, volume 3, issue 1, in 2017. DOI: 10.1016/j.trci.2016.11.005