Document Type
Article
Publication Date
2015
Abstract
With the growing concerns in the scientific and health communities over increasing levels of antibiotic resistance, antimicrobial peptide bacteriocins have emerged as promising alternative to conventional small molecule antibiotics. A substantial attention has recently focused on the utilization of bacteriocins in food preservation and health safety. Despite the fact that a large number of bacteriocins have been reported, only a few have been fully characterized and structurally elucidated. Since knowledge of the molecular structure is a key for understanding the mechanism of action and therapeutic effects of peptide, we centered our focus in this review on the structure-activity relationships of bacteriocins with a particular focus in seven bacteriocins, namely, nisin, microcin J25, microcin B17, microcin C, leucocin A, sakacin P, and pediocin PA-1. Significant structural changes responsible for the altered activity of the recent bacteriocin analogues are discussed here.
Recommended Citation
Etayash H., Azmi S., Dangeti, R., Kaur K., 2015. Peptide Bacteriocins – Structure Activity Relationships. Current Topics in Medicinal Chemistry 15. DOI: 10.2174/1568026615666150812121103
Copyright
Bentham Science
Comments
This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Current Topics in Medicinal Chemistry, volume 15, in 2015 following peer review. The definitive publisher-authenticated version will be available online at DOI: 10.2174/1568026615666150812121103.