Document Type
Article
Publication Date
7-5-2021
Abstract
Background and Aims: Dietary gangliosides are present in human milk and consumed in low amounts from organ meats. Clinical and animal studies indicate that dietary gangliosides attenuate signaling processes that are a hallmark of inflammatory bowel disease (IBD). Gangliosides decrease pro-inflammatory markers, improve intestinal permeability, and reduce symptoms characteristic in patients with IBD. The objective of this study was to examine mechanisms by which dietary gangliosides exert beneficial effects on intestinal health.
Methods: Studies were conducted in vitro using CaCo-2 intestinal epithelial cells. Gangliosides were extracted from milk powder and incubated with differentiated CaCo-2 cells after exposure to pro-inflammatory stimuli. Gut barrier integrity was assessed by electron microscopy, epithelial barrier function was examined by measuring transepithelial electric resistance, and content of HBD-2, IL-23, NF-κB, and sPLA2 was assessed by ELISA.
Results: Ganglioside attenuated the decrease in integrity of tight junctions induced by pro-inflammatory stimuli and improved epithelial barrier function (P < 0.05). Ganglioside decreased the basolateral secretion of sPLA2 (P ≤ 0.05), lowered HBD-2 and IL-23 levels (P ≤ 0.05), and inhibited NF-κB activation (P ≤ 0.05).
Conclusions: In summary, the present study indicates that ganglioside GD3 improves intestinal integrity by altering sPLA2 trafficking, and the production of pro-inflammatory mediators is mitigated by decreasing assembly of the NF-κB complex. Dietary gangliosides may have promising potential beneficial effects in IBD as decreased inflammatory signaling, improved intestinal integrity, and maintenance of epithelial barrier function have been demonstrated in vitro.
Recommended Citation
Miklavcic JJ, Li Q, Skolnick J, Thomson ABR, Mazurak VC, Clandinin MT. Ganglioside Alters Phospholipase Trafficking, Inhibits NF-κB Assembly, and Protects Tight Junction Integrity. Front Nutr. 2021;8:705172. Published 2021 Jul 5. https://doi.org/10.3389/fnut.2021.705172
Peer Reviewed
1
Copyright
The authors
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Included in
Biological Factors Commons, Digestive System Diseases Commons, Medicinal-Pharmaceutical Chemistry Commons, Other Chemicals and Drugs Commons
Comments
This article was originally published in Frontiers in Nutrition, volume 8, in 2021. https://doi.org/10.3389/fnut.2021.705172