Document Type

Article

Publication Date

8-12-2022

Abstract

We develop and apply a deep learning-based computer vision pipeline to automatically identify crew members in archival photographic imagery taken on-board the International Space Station. Our approach is able to quickly tag thousands of images from public and private photo repositories without human supervision with high degrees of accuracy, including photographs where crew faces are partially obscured. Using the results of our pipeline, we carry out a large-scale network analysis of the crew, using the imagery data to provide novel insights into the social interactions among crew during their missions.

Comments

This article was originally published in Acta Astronautica, volume 200, in 2022. https://doi.org/10.1016/j.actaastro.2022.08.017

Peer Reviewed

1

Copyright

The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.