Document Type
Article
Publication Date
12-7-2023
Abstract
A first look is taken at the NIRSpec 1–5 μm observations from James Webb Space Telescope program 1591 that targets seven objects along the low-mass stellar life cycle with polycyclic aromatic hydrocarbon (PAH) emission. Spectra extracted from a 1'.'5 radius circular aperture are explored, showing a wealth of features, including the 3 μm PAH complex, the PAH continuum, and atomic and molecular emission lines from H i, He, H2, and other species. CO2- and H2O-ice absorption and CO emission is also seen. Focusing on the bright-PDR position in M17, the PAH CH stretch falls at 3.29 μm (FWHM = 0.04 μm). Signs of its 1.68 μm overtone are confused by line emission in all targets. Multicomponent decomposition reveals a possible aliphatic deuterated PAH feature centered at 4.65 μm (FWHM = 0.02 μm), giving [D/H]alip. = 31% ± 12.7%. However, there is little sign of its aromatic counterpart between 4.36 and 4.43 μm. There is also little sign of PAH nitrile emission between 4.34 and 4.39 μm. A PAH continuum rises from ∼1 to 3.2 μm, after which it jumps by about a factor of 2.5 at 3.6 μm, with bumps at 3.8, 4.04, and 4.34 μm adding structure. The CO22O:CO2 ice at 10 K. The v = 0 pure rotational molecular hydrogen population diagram reveals >2200 K UV-pumped gas. The hydrogen Pfund series runs from levels 10 to >30. Considering Brα/Brβ = 0.381 ± 0.01966 and Case B recombination results in AV ≃ 8. CO emission in IRAS 21282+5050 originates from 258 K gas. In-depth spectral–spatial analysis of all features and targets is planned for a series of forthcoming papers.
Recommended Citation
Boersma C., Alamandolla, L. J., Esposito V. J., Maragkoudakis A., Bregman J. D., Temi P., Fortenberry R. C., and Peeters E. “JWST: Deuterated PAHs, PAH-nitriles, and PAH 4 Overtone and Combination Bands I: Program Description and First Look.” Astrophys. J., 959, 74 (2023). https://doi.org/10.3847/1538-4357/ad022b
Copyright
The authors
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.
Included in
Biological and Chemical Physics Commons, Other Astrophysics and Astronomy Commons, Physical Chemistry Commons
Comments
This article was originally published in Astrophysical Journal, volume 959, in 2023. https://doi.org/10.3847/1538-4357/ad022b