Document Type

Article

Publication Date

1-25-2024

Abstract

With the recent radioastronomical detection of cis-trans-carbonic acid (H2CO3) in a molecular cloud toward the Galactic center, the more stable but currently unobserved cis-cis conformer is shown here to have strong IR features. While the higher-energy cis-trans-carbonic acid was detected at millimeter and centimeter wavelengths, owing to its larger dipole moment, the vibrational structure of cis-cis-carbonic acid is more amenable to its observation at micron wavelengths. Even so, both conformers have relatively large IR intensities, and some of these fall in regions not dominated by polycyclic aromatic hydrocarbons. Water features may inhibit observation near the 2.75 μm hydride stretches, but other vibrational fundamentals and even overtones in the 5.5–6.0 μm range may be discernible with JWST data. This work has employed high-level, accurately benchmarked quantum chemical anharmonic procedures to compute exceptionally accurate rotational spectroscopic data compared to experiment. Such performance implies that the IR absorption and even cascade emission spectral features computed in this work should be accurate and will provide the needed reference for observation of either carbonic acid conformer in various astronomical environments.

Comments

This article was originally published in Astrophysical Journal, volume 961, in 2023. https://doi.org/10.3847/1538-4357/ad0f16

Copyright

The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.