Document Type
Article
Publication Date
5-23-2022
Abstract
Soil nitrous oxide (N2O) emissions are an important driver of climate change and are a major mechanism of labile nitrogen (N) loss from terrestrial ecosystems. Evidence increasingly suggests that locations on the landscape that experience biogeochemical fluxes disproportionate to the surrounding matrix (hot spots) and time periods that show disproportionately high fluxes relative to the background (hot moments) strongly influence landscape-scale soil N2O emissions. However, substantial uncertainties remain regarding how to measure and model where and when these extreme soil N2O fluxes occur. High-frequency datasets of soil N2O fluxes are newly possible due to advancements in field-ready instrumentation that uses cavity ring-down spectroscopy (CRDS). Here, we outline the opportunities and challenges that are provided by the deployment of this field-based instrumentation and the collection of high-frequency soil N2O flux datasets. While there are substantial challenges associated with automated CRDS systems, there are also opportunities to utilize these near-continuous data to constrain our understanding of dynamics of the terrestrial N cycle across space and time. Finally, we propose future research directions exploring the influence of hot moments of N2O emissions on the N cycle, particularly considering the gaps surrounding how global change forces are likely to alter N dynamics in the future.
Recommended Citation
O’Connell CS, Anthony TL, Mayes MA, Pérez T, Sihi D and Silver WL (2022) Utilizing Novel Field and Data Exploration Methods to Explore Hot Moments in High-Frequency Soil Nitrous Oxide Emissions Data: Opportunities and Challenges. Front. For. Glob. Change 5:674348. https://doi.org/10.3389/ffgc.2022.674348
Copyright
The authors
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.
Included in
Climate Commons, Environmental Chemistry Commons, Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, Soil Science Commons
Comments
This article was originally published in Frontiers In Forests And Global Change , volume 5, in 2022. https://doi.org/10.3389/ffgc.2022.674348