Document Type

Article

Publication Date

8-18-2025

Abstract

As precipitation infiltrates into soils, it can recharge them, displace previously stored waters, or bypass already-filled pores. Using 3,697 δ2H and δ18O measurements of water collected nearly monthly over >3 years in 47 forest plots across Switzerland, we present a systematic investigation of the controls on mobile soil water transport. We quantified the lags and damping of water as it percolates downward using young water fraction analysis (Fyw), and the fractions of soil water composed by precipitation that fell within the previous month (new water fractions, Fnew). The Fnew of water sampled in surface soils ranged widely, from 0% to 50%, but those fractions typically decreased with depth and converged on values of 0%–20% at depths below 80 cm. Soil characteristics explained much of the variation in Fyw and Fnew, as did climatological and root characteristics to a lesser, but still statistically significant, degree.

Comments

This article was originally published in Geophysical Research Letters, volume 52, issue 16, in 2025. https://doi.org/10.1029/2025GL115274

2025gl115274-sup-0001-supporting information si-s01.docx (4174 kB)
Supporting Information S1

Copyright

The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.