Document Type

Article

Publication Date

10-21-2024

Abstract

Oxygen isotopes (δ18O) are the most commonly utilized speleothem proxy and have provided many foundational records of paleoclimate. Thus, understanding processes affecting speleothem δ18O is crucial. Yet, prior calcite precipitation (PCP), a process driven by local hydrology, is a widely ignored control of speleothem δ18O. Here we investigate the effects of PCP on a stalagmite δ18O record from central Vietnam, spanning 45 – 4 ka. We employ a geochemical model that utilizes speleothem Mg/Ca and cave monitoring data to correct the δ18O record for PCP effects. The resulting record exhibits improved agreement with regional speleothem δ18O records and climate model simulations, suggesting that the corrected record more accurately reflects precipitation δ18O (δ18Op). Without considering PCP, our interpretations of the δ18O record would have been misleading. To avoid misinterpretations of speleothem δ18O, our results emphasize the necessity of considering PCP as a significant driver of speleothem δ18O.

Comments

This article was originally published in Nature Communications, volume 15, in 2024. https://doi.org/10.1038/s41467-024-53422-y

41467_2024_53422_MOESM1_ESM.pdf (1606 kB)
<a href="https://doi.org/10.1038/s41467-024-53422-y">https://doi.org/10.1038/s41467-024-53422-y</a>

Copyright

The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.