Document Type
Article
Publication Date
2-17-2020
Abstract
Repeat-associated non-AUG-initiated translation of expanded CGG repeats (CGG RAN) from the FMR1 5′-leader produces toxic proteins that contribute to neurodegeneration in fragile X-associated tremor/ataxia syndrome. Here we describe how unexpanded CGG repeats and their translation play conserved roles in regulating fragile X protein (FMRP) synthesis. In neurons, CGG RAN acts as an inhibitory upstream open reading frame to suppress basal FMRP production. Activation of mGluR5 receptors enhances FMRP synthesis. This enhancement requires both the CGG repeat and CGG RAN initiation sites. Using non-cleaving antisense oligonucleotides (ASOs), we selectively blocked CGG RAN. This ASO blockade enhanced endogenous FMRP expression in human neurons. In human and rodent neurons, CGG RAN-blocking ASOs suppressed repeat toxicity and prolonged survival. These findings delineate a native function for CGG repeats and RAN translation in regulating basal and activity-dependent FMRP synthesis, and they demonstrate the therapeutic potential of modulating CGG RAN translation in fragile X-associated disorders.
Recommended Citation
Rodriguez CM, Wright SE, Kearse MG, Jill M Haenfler , Brittany N Flores, Yu Liu, Marius F Ifrim, Mary R Glineburg, Amy Krans, Paymaan Jafar-Nejad, Michael A Sutton, Gary J Bassell, Jack M Parent, Frank Rigo, Sami J Barmada, Peter K Todd. A native function for RAN translation and CGG repeats in regulating fragile X protein synthesis. Nat Neurosci. 2020;23(3):386-397. https://doi.org/10.1038/s41593-020-0590-1
Copyright
The authors
Included in
Amino Acids, Peptides, and Proteins Commons, Animal Experimentation and Research Commons, Cell Biology Commons, Neurosciences Commons
Comments
This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Nature Neuroscience, volume 23, issue 3, in 2020 following peer review. This article may not exactly replicate the final published version. The definitive publisher-authenticated version is available online at https://doi.org/10.1038/s41593-020-0590-1.