Document Type
Article
Publication Date
7-18-2012
Abstract
Bacterial genomic islands are often flanked by tRNA genes, which act as sites for the integration of foreign DNA into the host chromosome. For example, Bacillus cereus ATCC14579 contains a pathogenicity island flanked by a predicted pseudo-tRNA, tRNAOther, which does not function in translation. Deletion of tRNAOther led to significant changes in cell wall morphology and antibiotic resistance and was accompanied by changes in the expression of numerous genes involved in oxidative stress responses, several of which contain significant complementarities to sequences surrounding tRNAOther. This suggested that tRNAOther might be expressed as part of a larger RNA, and RACE analysis subsequently confirmed the existence of several RNA species that significantly extend both the 3′ and 5′-ends of tRNAOther. tRNAOther expression levels were found to be responsive to changes in extracellular iron concentration, consistent with the presence of three putative ferric uptake regulator (Fur) binding sites in the 5′ leader region of one of these larger RNAs. Taken together with previous data, this study now suggests that tRNAOther may function by providing a tRNA-like structural element within a larger regulatory RNA. These findings illustrate that while integration of genomic islands often leaves tRNA genes intact and functional, in other instances inactivation may generate tRNA-like elements that are then recruited to other functions in the cell.
Recommended Citation
Rogers, T.E., Ataide, S.F., Dare, K., Katz, A. Seveau, S., Roy, H. and Ibba, M. (2012) A pseudo-tRNA modulates antibiotic resistance in Bacillus cereus. PLoS ONE. 7, e41248. https://doi.org/10.1371/journal.pone.0041248
Copyright
The authors
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.
Included in
Amino Acids, Peptides, and Proteins Commons, Biochemistry Commons, Cellular and Molecular Physiology Commons, Molecular Biology Commons, Nucleic Acids, Nucleotides, and Nucleosides Commons, Other Biochemistry, Biophysics, and Structural Biology Commons
Comments
This article was originally published in PLoS ONE, volume 7, in 2012. https://doi.org/10.1371/journal.pone.0041248