Document Type

Article

Publication Date

9-1-2009

Abstract

Bacillus cereus 14579 encodes two tRNAs with the CCA anticodon, tRNATrp and tRNAOther. tRNATrp was separately aminoacylated by two enzymes, TrpRS1 and TrpRS2, which share only 34% similarity and display different catalytic capacities and specificities. TrpRS1 was 18-fold more proficient at aminoacylating tRNATrp with Trp, while TrpRS2 more efficiently utilizes the Trp analog 5-hydroxy Trp. tRNAOther was not aminoacylated by either TrpRS but instead by the combined activity of LysRS1 and LysRS2, which recognized sequence elements absent from tRNATrp. Polysomes were found to contain tRNATrp, consistent with its role in translation, but not tRNAOther suggesting a function outside protein synthesis. Regulation of the genes encoding TrpRS1 and TrpRS2 (trpS1 and trpS2) is dependent on riboswitch-mediated recognition of the CCA anticodon, and the role of tRNAOther in this process was investigated. Deletion of tRNAOther led to up to a 50 fold drop in trpS1 expression, which resulted in the loss of differential regulation of the trpS1 and trpS2 genes in stationary phase. These findings reveal that sequence-specific interactions with a tRNA anticodon can be confined to processes outside translation, suggesting a means by which such RNAs may evolve non-coding functions.

Comments

This is an Accepted Manuscript of an article published in RNA Biology, volume 6, in 2009, available online at https://doi.org/10.4161/rna.6.4.9332. It may differ slightly from the final version of record.

Copyright

Taylor & Francis

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.