Document Type

Article

Publication Date

1-27-2020

Abstract

Passive microwave remote sensing technology is an effective means to identify the thermal anomalies associated with earthquakes due to its penetrating capability through clouds compared with infrared sensors. However, observed microwave brightness temperature is strongly influenced by soil moisture and other surface parameters. In the present article, the segmented threshold method has been proposed to detect anomalous microwave brightness temperature associated with the strong earthquakes occurred in Sichuan province, China, an earthquake-prone area with high soil moisture. The index of microwave radiation anomaly (IMRA) computed by the proposed method is found to enhance prior to the three strong earthquakes, 2008 Wenchuan (M = 7.8), 2013 Lushan (M = 6.6), and 2017 Jiuzhaigou (M = 6.5), occurred during 2008-2018 using the Defense Meteorological Space Program Special Sensor Microwave Imager/Sounder F17 satellite data. Our results show that the microwave brightness temperature anomalies appeared about two months prior to the three strong earthquakes. For the Wenchuan and Lushan earthquakes, the enhanced IMRA distributed along the main fault, which is consistent with the variations of our earlier studies of the 1997 Manyi (M = 7.5) and the 2001 Kokoxili (M = 7.8) earthquakes in the region with low soil moisture. For the Jiuzhaigou earthquake, the anomalies distributed around the epicenter and do not indicate the seismogenic structure, which could be due to the presence of a blind fault. It should be noted that quantitative evaluation of IMRA is limited due to infrequent occurrence of earthquakes.

Comments

This article was originally published in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, volume13, in 2020. https://doi.org/10.1109/JSTARS.2020.2968568

Copyright

The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.