Document Type
Article
Publication Date
10-26-2015
Abstract
Poly(N-isopropylacrylamide) microgel-based optical devices were designed such that they can be stimulated to change their optical properties in response to light produced by a light-emitting diode (LED). The devices were fabricated by sandwiching the synthesized microgels between two Cr/Au layers all supported on a glass coverslip with gold nanoparticles (AuNPs) deposited. Here, we found that these devices can be stimulated to change their optical properties when exposed to green LED light, which excites the AuNPs and increases the local temperature, causing the thermoresponsive microgels to decrease in diameter, resulting in a change in the devices’ optical properties. We also found that the sensitivity of the evices to light was more pronounced as the environmental temperature approached the lower critical solution temperature (LCST) for the microgels, although the sensitivity of the devices to light exposure dropped off dramatically as the environmental temperature was increased above the LCST. This was a direct result of the microgels already being in their collapsed state and therefore unable to decrease in diameter any further due to light exposure. Finally, we found that the sensitivity of the devices to light exposure increased with increasing number of AuNP layers in the devices. We anticipate that these devices could be used for drug delivery applications; by using light to stimulate microgel collapse, the microgel-based devices can be stimulated to release small molecules on demand.
Recommended Citation
Islam, M. R., Irvine, J.; Serpe, M. J. Photothermally Induced Optical Property Changes of Poly (N-isopropylacrylamide) Microgel-Based Etalons. ACS Applied Materials & Interfaces, 2015, 7(43): 24370-24376. https://doi.org/10.1021/acsami.5b08532
Supporting Information: Additional Figures S1 and S2
Copyright
American Chemical Society
Comments
This article was originally published in ACS Applied Materials & Interfaces, volume 7, issue 43, in 2015. https://doi.org/10.1021/acsami.5b08532
This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.