Document Type

Article

Publication Date

10-28-2010

Abstract

The euryhaline, amphibious mangrove killifish Kryptolebias marmoratus is known to survive weeks out of water in moist environments. We tested the hypothesis that the skin is a site of osmo- and ionoregulation in K. marmoratus. We predicted that under terrestrial conditions, gill and skin remodeling would result in an enhanced role for skin and a diminished role for the gills in osmo- and ionoregulation. Fish were exposed to water—either freshwater (FW, 1‰) or hypersaline water (saltwater [SW], 45‰)—or air over a moist surface of FW or SW for 9 d and then recovered in water. When fish were emersed for 9 d, 22Na and 3H-H2O were exchanged across the cutaneous surface. Homeostasis of whole-body Cl! and water levels but not of Na" levels was maintained over 9 d in air. In air-exposed fish, there was a significant increase in the size of skin ionocytes (in SW), a decrease in the number of skin mucous cells (in SW), and an increase in the gill interlamellar cell mass relative to those of fish in water. Gill ionocytes were mostly embedded away from the external surface in air exposed fish, but the number and size of ionocytes increased (in FW). Interestingly, skin ionocytes formed distinct clusters of 20–30 cells. The estimated number of ionocytes over the whole skin surface was comparable to that in the gills. Overall, the findings support the hypothesis that the skin is a site of osmo- and ionoregulation in K. marmoratus in aquatic and terrestrial environments. Reversible cellular and morphological changes to the skin and gills during air exposure probably enhanced the cutaneous contribution to ion and water balance.

Comments

This article was originally published in Physiological and Biochemical Zoology, volume 83, in 2010. DOI: 10.1086/656307

Copyright

University of Chicago Press

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.