Document Type

Article

Publication Date

8-10-2023

Abstract

Interference phenomena are often claimed to resist classical explanation. However, such claims are undermined by the fact that the specific aspects of the phenomenology upon which they are based can in fact be reproduced in a noncontextual ontological model [Catani et al., arXiv:2111.13727]. This raises the question of what other aspects of the phenomenology of interference do in fact resist classical explanation. We answer this question by demonstrating that the most basic quantum wave-particle duality relation, which expresses the precise tradeoff between path distinguishability and fringe visibility, cannot be reproduced in any noncontextual model. We do this by showing that it is a specific type of uncertainty relation and then leveraging a recent result establishing that noncontextuality restricts the functional form of this uncertainty relation [Catani et al., Phys. Rev. Lett. 129, 240401 (2022)]. Finally, we discuss what sorts of interferometric experiment can demonstrate contextuality via the wave-particle duality relation.

Comments

This article was originally published in Physical Review A, volume 108, in 2023. https://doi.org/10.1103/PhysRevA.108.022207

Peer Reviewed

1

Copyright

American Physical Society

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.