Document Type

Article

Publication Date

7-30-2021

Abstract

Lebesgue space inequalities are proved for a variant of the triangular Hilbert transform involving curvature. The analysis relies on a crucial trilinear smoothing inequality developed herein, and on bounds for an anisotropic variant of the twisted paraproduct.

The trilinear smoothing inequality also leads to Lebesgue space bounds for a corresponding maximal function and a quantitative nonlinear Roth-type theorem concerning patterns in the Euclidean plane.

Comments

This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Advances in Mathematics, volume 390, in 2021 following peer review. This article may not exactly replicate the final published version. The definitive publisher-authenticated version is available online at https://doi.org/10.1016/j.aim.2021.107863.

Peer Reviewed

1

Copyright

Elsevier

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.