Atmospheric and Ionospheric Coupling Phenomena Associated with Large Earthquakes
Document Type
Article
Publication Date
10-2-2020
Abstract
This paper explores multi-instrument space-borne observations in order to validate physical concepts of Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) in relation to a selection of major seismic events. In this study we apply some validated techniques to observations in order to identify atmospheric and ionospheric precursors associated with some of recent most destructive earthquakes: M8.6 of March 28, 2005 and M8.5 of Sept. 12, 2007 in Sumatra, and M7.9 of May 12, 2008 in Wenchuan, China. New investigations are also presented concerning these three earthquakes and for the M7.2 of March 2008 in the Xinjiang-Xizang border region, China (the Yutian earthquake). It concerns the ionospheric density, the Global Ionospheric Maps (GIM) of the Total Electron Content (TEC), the Thermal Infra-Red (TIR) anomalies, and the Outgoing Longwave Radiation (OLR) data. It is shown that all these anomalies are identified as short-term precursors, which can be explained by the LAIC concept proposed in [S. Pulinets, D. Ouzounov, J. Asian Earth Sci. 41, 371 (2011)].
Recommended Citation
Parrot, M., Tramutoli, V., Liu, T.J.Y. et al. Atmospheric and ionospheric coupling phenomena associated with large earthquakes. Eur. Phys. J. Spec. Top. 230, 197–225 (2021). https://doi.org/10.1140/epjst/e2020-000251-3
Peer Reviewed
1
Copyright
Springer
Comments
This article was originally published in The European Physical Journal Special Topics , volume 230, in 2021. https://doi.org/10.1140/epjst/e2020-000251-3
The Link to Full Text button above directs users to a free read-only version of the article.