Document Type

Article

Publication Date

11-10-2022

Abstract

We use methods from the Fock space and Segal–Bargmann theories to prove several results on the Gaussian RBF kernel in complex analysis. The latter is one of the most used kernels in modern machine learning kernel methods and in support vector machine classification algorithms. Complex analysis techniques allow us to consider several notions linked to the radial basis function (RBF) kernels, such as the feature space and the feature map, using the so-called Segal–Bargmann transform. We also show how the RBF kernels can be related to some of the most used operators in quantum mechanics and time frequency analysis; specifically, we prove the connections of such kernels with creation, annihilation, Fourier, translation, modulation, and Weyl operators. For the Weyl operators, we also study a semigroup property in this case.

Comments

This article was originally published in Journal of Mathematical Physics, volume 63, in 2022. https://doi.org/10.1063/5.0060342

Peer Reviewed

1

Copyright

The authors. Published under an exclusive license by AIP Publishing.

Included in

Analysis Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.