Document Type

Article

Publication Date

8-28-2018

Abstract

Optical phase spaces represent fields of any spatial coherence and are typically measured through phase-retrieval methods involving a computational inversion, optical interference, or a resolution-limiting lenslet array. Recently, a weak-values technique demonstrated that a beam's Dirac phase space is proportional to the measurable complex weak value, regardless of coherence. These direct measurements require raster scanning through all position-polarization couplings, limiting their dimensionality to less than 100 000 [C. Bamber and J. S. Lundeen, Phys. Rev. Lett. 112, 070405 (2014)]. We circumvent these limitations using compressive sensing, a numerical protocol that allows us to undersample, yet efficiently measure, high-dimensional phase spaces. We also propose an improved technique that allows us to directly measure phase spaces with high spatial resolution with scalable frequency resolution. With this method, we are able to easily and rapidly measure a 1.07-billion-dimensional phase space. The distributions are numerically propagated to an object in the beam path, with excellent agreement for coherent and partially coherent sources. This protocol has broad implications in quantum research, signal processing, and imaging, including the recovery of Fourier amplitudes in any dimension with linear algorithmic solutions and ultra-high-dimensional phase-space imaging.

Comments

This article was originally published in Physical Review A, volume 98, issue 2, in 2018. https://doi.org/10.1103/PhysRevA.98.023854

Peer Reviewed

1

Copyright

American Physical Society

Included in

Optics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.