Document Type

Conference Proceeding

Publication Date

2014

Abstract

Theoretical explanation of the Meissner effect involves proportionality between current density and vector potential, which has many deep consequences. As noticed by de Gennes, superconductors in a magnetic field "find an equilibrium state where the sum of kinetic and magnetic energies is minimum" and this state "corresponds to the expulsion of the magnetic field". This statement still leaves an open question: from which source is the superconducting current acquiring its kinetic energy? A naïve answer, perhaps, is from the energy of the magnetic field. However, one can consider situations (Aharonov-Bohm effect), where the classical magnetic field is locally absent in the area occupied by the current. Experiments demonstrate that despite the local absence of the magnetic field, current is, nevertheless, building up. From what source is it acquiring its energy then? Locally, only a vector potential is present. How does the vector potential facilitate the formation of the current? Is the current formation a result of a truly non-local quantum action, or does the local action of the vector potential have experimental consequences? We discuss possible experiments with a hybrid normal-metal superconductor circuitry, which can clarify this puzzling situation. Experimental answers will be important for further developments.

Comments

This article was originally published in Journal of Physics: Conference Series, volume 507, in 2014. https://doi.org/10.1088/1742-6596/507/4/042012

Copyright

IOP Publishing

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.