Document Type

Conference Proceeding

Publication Date



The non-deterministic algorithmic procedure PEARL (acronym for ‘Propositional variables Elimination Algorithm for Relevance Logic’) has been recently developed for computing first-order equivalents of formulas of the language of relevance logics LR in terms of the standard Routley-Meyer relational semantics. It succeeds on a large class of axioms of relevance logics, including all so called inductive formulas. In the present work we re-interpret PEARL from an algebraic perspective, with its rewrite rules seen as manipulating quasi-inequalities interpreted over Urquhart’s relevant algebras, and report on its recent Python implementation. We also show that all formulae on which PEARL succeeds are canonical, i.e., preserved under canonical extensions of relevant algebras. This generalizes the “canonicity via correspondence” result in [37]. We also indicate that with minor modifications PEARL can also be applied to bunched implication algebras and relation algebras.


This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Relational and Algebraic Methods in Computer Science. RAMiCS 2021. Lecture Notes in Computer Science, volume 13027, in 2021. The final publication may differ and is available at Springer via





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.