Document Type
Article
Publication Date
7-10-2021
Abstract
Superoscillating functions are band-limited functions that can oscillate faster than their fastest Fourier component. The notion of superoscillation is a particular case of that one of supershift. In the recent years, superoscillating functions, that appear for example in weak values in quantum mechanics, have become an interesting and independent field of research in complex analysis and in the theory of infinite order differential operators. The aim of this paper is to study some infinite order differential operators acting on entire functions which naturally arise in the study of superoscillating functions. Such operators are of particular interest because they are associated with the relativistic sum of the velocities and with the Blaschke products. To show that some sequences of functions preserve the superoscillatory behavior it is of crucial importance to prove that their associated infinite order differential operators act continuously on some spaces of entire functions with growth conditions.
Recommended Citation
Alpay, D., Colombo, F., Pinton, S. et al. Holomorphic functions, relativistic sum, Blaschke products and superoscillations. Anal.Math.Phys. 11, 139 (2021). https://doi.org/10.1007/s13324-021-00572-7
Peer Reviewed
1
Copyright
The authors
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Comments
This article was originally published in Analysis and Mathematical Physics, volume 11, in 2021. https://doi.org/10.1007/s13324-021-00572-7