Document Type

Article

Publication Date

7-10-2021

Abstract

Superoscillating functions are band-limited functions that can oscillate faster than their fastest Fourier component. The notion of superoscillation is a particular case of that one of supershift. In the recent years, superoscillating functions, that appear for example in weak values in quantum mechanics, have become an interesting and independent field of research in complex analysis and in the theory of infinite order differential operators. The aim of this paper is to study some infinite order differential operators acting on entire functions which naturally arise in the study of superoscillating functions. Such operators are of particular interest because they are associated with the relativistic sum of the velocities and with the Blaschke products. To show that some sequences of functions preserve the superoscillatory behavior it is of crucial importance to prove that their associated infinite order differential operators act continuously on some spaces of entire functions with growth conditions.

Comments

This article was originally published in Analysis and Mathematical Physics, volume 11, in 2021. https://doi.org/10.1007/s13324-021-00572-7

Peer Reviewed

1

Copyright

The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Included in

Analysis Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.