Document Type


Publication Date



In previous works, we have shown the efficacy of using Deep Belief Networks, paired with clustering, to identify distinct classes of objects within remotely sensed data via cluster analysis and qualitative analysis of the output data in comparison with reference data. In this paper, we quantitatively validate the methodology against datasets currently being generated and used within the remote sensing community, as well as show the capabilities and benefits of the data fusion methodologies used. The experiments run take the output of our unsupervised fusion and segmentation methodology and map them to various labeled datasets at different levels of global coverage and granularity in order to test our models’ capabilities to represent structure at finer and broader scales, using many different kinds of instrumentation, that can be fused when applicable. In all cases tested, our models show a strong ability to segment the objects within input scenes, use multiple datasets fused together where appropriate to improve results, and, at times, outperform the pre-existing datasets. The success here will allow this methodology to be used within use concrete cases and become the basis for future dynamic object tracking across datasets from various remote sensing instruments.


This article was originally published in Remote Sensing, volume 13, in 2021.

Peer Reviewed



The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.