Document Type
Article
Publication Date
3-30-2021
Abstract
Land-cover change is a critical concern due to its climatic, ecological, and socioeconomic consequences. In this study, we used multiple variables including precipitation, vegetation index, surface soil moisture, and evapotranspiration obtained from different satellite sources to study their association with land-cover changes in the Mediterranean region. Both observational and modeling data were used for climatology and correlation analysis. Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) and Global Land Data Assimilation System (GLDAS) were used to extract surface soil moisture and evapotranspiration data. Intercomparing the results of FLDAS and GLDAS suggested that FLDAS data had better accuracy compared to GLDAS for its better coherence with observational data. Climate Hazards Group Infra-Red Precipitation with Station Data (version 2.0 final) (CHIRPS Pentad) were used to extract precipitation data while Moderate Resolution Imaging Spectroradiometer (MODIS) products were used to extract the vegetation indices used in this study. The land-cover change detection was demonstrated during the 2009–2018 period using MODIS Land-Cover data. Some of the barren and crop lands in Euphrates-Tigris and Algeria have converted to low-vegetated shrublands over the time, while shrublands and barren areas in Egypt’s southwestern Delta region became grasslands. These observations were well explained by changing trends of hydrological variables which showed that precipitation and soil moisture had higher values in the countries located to the east of the Mediterranean region compared to the ones on the west. For evapotranspiration, the countries in the north had lower values except for countries in Europe such as Bosnia, Romania, Slovenia, and countries in Africa such as Egypt and Libya. The enhanced vegetation index appeared to be decreasing from north to south, with countries in the north such as Germany, Romania, and Czechia having higher values, while countries in the south such as Libya, Egypt, and Iraq having lower trends. Time series analysis for selected countries was also done to understand the change in hydrological parameters, including Enhanced Vegetation Index, evapotranspiration, and soil moisture, which showed alternating drop and rise as well as stagnant values for different parameters in each country.
Recommended Citation
Li, W., Perera, S., Linstead, E. et al. Investigating Decadal Changes of Multiple Hydrological Products and Land-Cover Changes in the Mediterranean Region for 2009–2018. Earth Syst Environ (2021). https://doi.org/10.1007/s41748-021-00213-w
Peer Reviewed
1
Copyright
The authors
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Included in
Atmospheric Sciences Commons, Climate Commons, Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, Hydrology Commons, Remote Sensing Commons
Comments
This article was originally published in Earth Systems and Environment in 2021. https://doi.org/10.1007/s41748-021-00213-w