A Remark on Alexander Duality and Thom Classes
Document Type
Article
Publication Date
1985
Abstract
Let M be an n-dimensional compact oriented differentiable manifold, A subset M a closed subset, U = M\A. We associate to each (n - k)-submanifold with boundary (S,\ ensuremath {\ partial} S) $\ subset $(M, U) a <> $\ tau^{(s)}\ epsilon\ bar {H^{k}}(A) $, via Alexander duality. Thom isomorphism theorem enables us to provide an explicit construction of $\ tau^{(s)} $. Finally we discuss some concrete examples.
Recommended Citation
Struppa, D.C., & Turrini, C. (1985). A remark on Alexander duality and Thom classes. Università degli Studi di Trieste, Dipartimento di Scienze Matematiche. Retrieved from https://www.openstarts.units.it/dspace/bitstream/10077/5057/1/StruppaTurriniRendMat17.pdf
Peer Reviewed
1
Copyright
Università degli Studi di Trieste. Dipartimento di Scienze Matematiche?
Comments
This article was originally published in Università degli Studi di Trieste, Dipartimento di Scienze Matematiche in 1985.