A Remark on Alexander Duality and Thom Classes

Document Type

Article

Publication Date

1985

Abstract

Let M be an n-dimensional compact oriented differentiable manifold, A subset M a closed subset, U = M\A. We associate to each (n - k)-submanifold with boundary (S,\ ensuremath {\ partial} S) $\ subset $(M, U) a <> $\ tau^{(s)}\ epsilon\ bar {H^{k}}(A) $, via Alexander duality. Thom isomorphism theorem enables us to provide an explicit construction of $\ tau^{(s)} $. Finally we discuss some concrete examples.

Comments

This article was originally published in Università degli Studi di Trieste, Dipartimento di Scienze Matematiche in 1985.

Peer Reviewed

1

Copyright

Università degli Studi di Trieste. Dipartimento di Scienze Matematiche?

Share

COinS