Document Type

Article

Publication Date

4-6-2019

Abstract

The classical unconditional exact p-value test can be used to compare two multinomial distributions with small samples. This general hypothesis requires parameter estimation under the null which makes the test severely conservative. Similar property has been observed for Fisher's exact test with Barnard and Boschloo providing distinct adjustments that produce more powerful testing approaches. In this study, we develop a novel adjustment for the conservativeness of the unconditional multinomial exact p-value test that produces nominal type I error rate and increased power in comparison to all alternative approaches. We used a large simulation study to empirically estimate the 5th percentiles of the distributions of the p-values of the exact test over a range of scenarios and implemented a regression model to predict the values for two-sample multinomial settings. Our results show that the new test is uniformly more powerful than Fisher's, Barnard's, and Boschloo's tests with gains in power as large as several hundred percent in certain scenarios. Lastly, we provide a real-life data example where the unadjusted unconditional exact test wrongly fails to reject the null hypothesis and the corrected unconditional exact test rejects the null appropriately.

Comments

This article was originally published in Journal of Applied Statistics in 2019. DOI: 10.1080/02664763.2019.1601689

Peer Reviewed

1

Copyright

The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.