Document Type
Article
Publication Date
12-8-2017
Abstract
A Gedanken experiment is presented where an excited and a ground-state atom are positioned such that, within the former’s half-life time, they exchange a photonwith 50% probability.Ameasurement of their energy statewill therefore indicate in 50% of the cases that no photon was exchanged. Yet other measurements would reveal that, by the mere possibility of exchange, the two atoms have become entangled. Consequently, the “no exchange” result, apparently precluding entanglement, is non-locally established between the atoms by this very entanglement. This quantum-mechanical version of the ancient Liar Paradox can be realized with already existing transmission schemes, with the addition of Bell’s theorem applied to the no-exchange cases. Under appropriate probabilities, the initially-excited atom, still excited, can be entangled with additional atoms time and again, or alternatively, exert multipartite nonlocal correlations in an interaction free manner. When densely repeated several times, this result also gives rise to the Quantum Zeno effect, again exerted between distant atoms without photon exchange. We discuss these experiments as variants of interactionfree- measurement, now generalized for both spatial and temporal uncertainties. We next employ weak measurements for elucidating the paradox. Interpretational issues are discussed in the conclusion, and a resolution is offered within the Two-State Vector Formalism and its new Heisenberg framework.
Recommended Citation
Aharonov, Y., Cohen, E., Elitzur, A.C. et al. Found Phys (2018) 48: 1. https://doi.org/10.1007/s10701-017-0127-y
Peer Reviewed
1
Copyright
The authors
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Comments
This article was originally published in Foundations of Physics, volume 48, issue 1, in 2018. DOI: 10.1007/s10701-017-0127-y