Document Type

Article

Publication Date

9-19-2017

Abstract

Aharonov-Berry superoscillations are band-limited functions that oscillate faster than their fastest Fourier component. Superoscillations appear in several fields of science and technology, such as Aharonov’s weak measurement in quantum mechanics, in optics, and in signal processing. An important issue is the study of the evolution of superoscillations using the Schrödinger equation when the initial datum is a weak value. Some superoscillatory functions are not square integrable, but they are real analytic functions that can be extended to entire holomorphic functions. This fact leads to the study of the continuity of a class of convolution operators acting on suitable spaces of entire functions with growth conditions. In this paper, we study the evolution of a superoscillatory initial datum in a uniform magnetic field. Moreover, we collect some results on convolution operators that appear in the theory of superoscillatory functions using a direct approach that allows the convolution operators to have non-constant coefficients of polynomial type.

Comments

This article was originally published in Journal of Mathematical Physics, volume 58, in 2017. DOI: 10.1063/1.4991489

Peer Reviewed

1

Copyright

AIP Publishing

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.