Document Type

Article

Publication Date

5-8-2017

Abstract

It is shown that Tarski’s set of ten axioms for the calculus of relations is independent in the sense that no axiom can be derived from the remaining axioms. It is also shown that by modifying one of Tarski’s axioms slightly, and in fact by replacing the right-hand distributive law for relative multiplication with its left-hand version, we arrive at an equivalent set of axioms which is redundant in the sense that one of the axioms, namely the second involution law, is derivable from the other axioms. The set of remaining axioms is independent. Finally, it is shown that if both the left-hand and right-hand distributive laws for relative multiplication are included in the set of axioms, then two of Tarski’s other axioms become redundant, namely the second involution law and the distributive law for converse. The set of remaining axioms is independent and equivalent to Tarski’s axiom system.

Comments

This article was originally published in Journal of Symbolic Logic, volume 82, issue 3, in 2017. DOI: 10.1017/jsl.2016.32

Peer Reviewed

1

Copyright

Association for Symbolic Logic

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.