Document Type
Article
Publication Date
6-20-2017
Abstract
Air pollution contributes to a large fraction of the total mortality estimated under the global burden of disease project (GBD) of the World Health Organization (WHO). This paper discusses an integrated study to obtain the spatiotemporal characteristics of particulate matter (PM10 and PM2.5) and trace gases (O3, SO2, NO2, and CO) pollutants in Hangzhou City (China) for the years 2014–2016. Our detailed analysis shows a relationship between air pollutants and land-use/land-cover change. Air quality parameters (PM2.5 and PM10) and trace gases (SO2, NO2, and CO) show strong monthly variations in the months of January (higher values) and July (lower values). During monsoon and summer seasons, air quality and trace gases show low values, whereas ozone (O3) is higher in the summer and lower in the winter. The spatial distribution of air pollutants is retrieved using the kriging method at the monitoring sites in Hangzhou City. We have considered normalized difference vegetation index (NDVI) and land surface temperature (LST) from the Landsat 8 data. The correlation between air pollutants and land use at the street-town unit suggests that areas with low NDVI, high road density, large built-up density, and LST are consistent with high concentrations of particulate matter and SO2, NO2, and CO. Among the trace gases, NO2 is found to be the most sensitive element affected by land use patterns, and O3 shows weak correlation with land use. SO2 shows a strong positive correlation with road density and LST, whereas CO shows positive correlation with the built-up density, LST, and population density.
Recommended Citation
Zheng, S.; Zhou, X.; Singh, R.P.; Wu, Y.; Ye, Y.; Wu, C. The Spatiotemporal Distribution of Air Pollutants and Their Relationship with Land-Use Patterns in Hangzhou City, China. Atmosphere 2017, 8, 110. doi:10.3390/atmos8060110
Peer Reviewed
1
Copyright
The authors
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Included in
Atmospheric Sciences Commons, Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, Other Environmental Sciences Commons
Comments
This article was originally published in Atmosphere, volume 8, in 2017. DOI: 10.3390/atmos8060110