Document Type

Article

Publication Date

2-1-2017

Abstract

In the past 50 years, quantum physicists have discovered, and experimentally demonstrated, a phenomenon which they termed superoscillations. Aharonov and his collaborators showed that superoscillations naturally arise when dealing with weak values, a notion that provides a fundamentally different way to regard measurements in quantum physics. From a mathematical point of view, superoscillating functions are a superposition of small Fourier components with a bounded Fourier spectrum, which result, when appropriately summed, in a shift that can be arbitrarily large, and well outside the spectrum. Purpose of this work is twofold: on one hand we provide a self-contained survey of the existing literature, in order to offer a systematic mathematical approach to superoscillations; on the other hand, we obtain some new and unexpected results, by showing that superoscillating sequences can be seen of as solutions to a large class of convolution equations and can therefore be treated within the theory of Analytically Uniform spaces. In particular, we will also discuss the persistence of the superoscillatory behavior when superoscillating sequences are taken as initial values of the Schrödinger equation and other equations.

Comments

This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Memoirs of the American Mathematical Society, volume 247, in 2017 following peer review. The definitive publisher-authenticated version is available online at DOI: 10.1090/memo/1174

Peer Reviewed

1

Copyright

American Mathematical Society

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.