"New Topological C-Algebras With Applications in Linear Systems Theory" by Daniel Alpay and Guy Salomon
 

Document Type

Article

Publication Date

2012

Abstract

Motivated by the Schwartz space of tempered distributions S′ and the Kondratiev space of stochastic distributions S−1 we define a wide family of nuclear spaces which are increasing unions of (duals of) Hilbert spaces H′p,p∈N, with decreasing norms |⋅|p. The elements of these spaces are functions on a free commutative monoid. We characterize those rings in this family which satisfy an inequality of the form |f∗g|p≤A(p−q)|f|q|g|p for all p≥q+d, where * denotes the convolution in the monoid, A(p−q) is a strictly positive number and d is a fixed natural number (in this case we obtain commutative topological C-algebras). Such an inequality holds in S−1, but not in S′. We give an example of such a ring which contains S′. We characterize invertible elements in these rings and present applications to linear system theory

Comments

This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Infinite Dimensional Analysis and Quantum Probability, volume 12, in 2012 following peer review. The definitive publisher-authenticated version is available online at DOI: 10.1142/S0219025712500117

Peer Reviewed

1

Copyright

World Scientific

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 9
  • Usage
    • Downloads: 35
    • Abstract Views: 3
  • Captures
    • Readers: 2
see details

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.