Document Type

Article

Publication Date

2015

Abstract

A recurrent theme in functional analysis is the interplay between the theory of positive definite functions, and their reproducing kernels, on the one hand, and Gaussian stochastic processes, on the other. This central theme is motivated by a host of applications, e.g., in mathematical physics, and in stochastic differential equations, and their use in financial models. In this paper, we show that, for three classes of cases in the correspondence, it is possible to obtain explicit formulas which are amenable to computations of the respective Gaussian stochastic processes. For achieving this, we first develop two functional analytic tools. They are: (i) an identification of a universal sample space Ω where we may realize the particular Gaussian processes in the correspondence; and (ii) a procedure for discretizing computations in Ω. The three classes of processes we study are as follows: Processes associated with: (a) arbitrarily given sigma finite regular measures on a fixed Borel measure space; (b) with Hilbert spaces of sigmafunctions; and (c) with systems of self-similar measures arising in the theory of iterated function systems. Even our results in (a) go beyond what has been obtained previously, in that earlier studies have focused on more narrow classes of measures, typically Borel measures on Rn. In our last theorem (section 10), starting with a non-degenerate positive definite function K on some fixed set T , we show that there is a choice of a universal sample space Ω, which can be realized as a boundary of (T,K). Its boundary-theoretic properties are analyzed, and we point out their relevance to the study of electrical networks on countable infinite graphs.

Comments

This is an Accepted Manuscript of an article published in Numerical Functional Analysis and Optimization, volume 36, issue 10, in 2015, available online: DOI: 10.1080/01630563.2015.1062777. It may differ slightly from the final version of record.

Peer Reviewed

1

Copyright

Taylor & Francis

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.