Document Type

Article

Publication Date

2002

Abstract

Realization theory for operator colligations on Pontryagin spaces is used to study interpolation and factorization in generalized Schur classes. Several criteria are derived which imply that a given function is almost the restriction of a generalized Schur function. The role of realization theory in coefficient problems is also discussed; a solution of an indefinite Carathéodory-Fejér problem is obtained, as well as a result that relates the number of negative (positive) squares of the reproducing kernels associated with the canonical coisometric, isometric, and unitary realizations of a generalized Schur function to the number of negative (positive) eigenvalues of matrices derived from their Taylor coefficients.

Comments

This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Operator Theory: Advances and Applications, volume 134, in 2002 following peer review. The final publication is available at Springer via DOI: 10.1007/978-3-0348-8215-6_5

Peer Reviewed

1

Copyright

Springer

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.