Document Type
Article
Publication Date
2013
Abstract
Scalar rational functions with a non-negative real part on the right half plane, called positive, are classical in the study of electrical networks, dissipative systems, Nevanlinna-Pick interpolation and other areas. We here study generalized positive functions, i.e with a non-negative real part on the imaginary axis. These functions form a Convex Invertible Cone, cic in short, and we explore two partitionings of this set: (i) into (infinitely many non-invertible) convex cones of functions with prescribed poles and zeroes in the right half plane and (ii) each generalized positive function can be written as a sum of even and odd parts. The sets of even generalized positive and odd functions form subcics.
It is well known that the Nevanlinna-Pick interpolation problem is not always solvable by positive functions. Unfortunately, there is no computationally simple procedure to carry out this interpolation in the framework of generalized positive functions. Through examples it is illustrated how the two above partitionings of generalized positive functions can be exploited to introduce simple ways to carry out the Nevanlinna-Pick interpolation.
Finally we show that only some of these properties are carried over to rational generalized bounded functions, mapping the imaginary axis to the unit disk.
Recommended Citation
D. Alpay and I. Lewkowicz. Convex cones of generalized positive rational functions and Nevanlinna-Pick interpolation. Linear Algebra and its Applications, vol. 438 (2013) 3949-3966.
Peer Reviewed
1
Copyright
Elsevier
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Included in
Algebra Commons, Discrete Mathematics and Combinatorics Commons, Other Mathematics Commons
Comments
NOTICE: this is the author’s version of a work that was accepted for publication in Linear Algebra and its Applications. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Linear Algebra and its Applications, volume 438, in 2013. DOI: 10.1016/j.laa.2012.01.023
The Creative Commons license below applies only to this version of the article.