Document Type

Article

Publication Date

2016

Abstract

We here present three characterizations of not necessarily causal, rational functions which are (co)-isometric on the unit circle:
(i) through the realization matrix of Schur stable systems,
(ii) the Blaschke-Potapov product, which is then employed to introduce an easy-to-use description of all these functions with dimensions and McMillan degree as parameters,
(iii) through the (not necessarily reducible) Matrix Fraction Description (MFD).
In cases (ii) and (iii) the poles of the rational functions involved may be anywhere in the complex plane, but the unit circle (including both zero and infinity). A special attention is devoted to exploring the gap between the square and rectangular cases.

Comments

This article was originally published in Opuscula Mathematica, volume 36, issue 6, in 2016. DOI: 10.7494/OpMath.2016.36.6.695

Peer Reviewed

1

Copyright

Wydawnictwa AGH

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.