Document Type
Article
Publication Date
2016
Abstract
We here present three characterizations of not necessarily causal, rational functions which are (co)-isometric on the unit circle:
(i) through the realization matrix of Schur stable systems,
(ii) the Blaschke-Potapov product, which is then employed to introduce an easy-to-use description of all these functions with dimensions and McMillan degree as parameters,
(iii) through the (not necessarily reducible) Matrix Fraction Description (MFD).
In cases (ii) and (iii) the poles of the rational functions involved may be anywhere in the complex plane, but the unit circle (including both zero and infinity). A special attention is devoted to exploring the gap between the square and rectangular cases.
Recommended Citation
D. Alpay, P. Jorgensen, and I. Lewkowicz. Characterizations of rectangular (para)-unitary rational functions. Opuscula Mathematica, vol. 36 (2016), 695-716.
Peer Reviewed
1
Copyright
Wydawnictwa AGH
Included in
Algebra Commons, Discrete Mathematics and Combinatorics Commons, Other Mathematics Commons
Comments
This article was originally published in Opuscula Mathematica, volume 36, issue 6, in 2016. DOI: 10.7494/OpMath.2016.36.6.695