Document Type
Article
Publication Date
3-18-2015
Abstract
We examine the results of the paper “Precision metrology using weak measurements” (Zhang et al. arXiv:1310.5302, 2013) from a quantum state discrimination point of view. The Heisenberg scaling of the photon number for the precision of the interaction parameter between coherent light and a spin one-half particle (or pseudo-spin) has a simple interpretation in terms of the interaction rotating the quantum state to an orthogonal one. To achieve this scaling, the information must be extracted from the spin rather than from the coherent state of light, limiting the applications of the method to phenomena such as cross-phase modulation. We next investigate the effect of dephasing noise and show a rapid degradation of precision, in agreement with general results in the literature concerning Heisenberg scaling metrology. We also demonstrate that a von Neumann-type measurement interaction can display a similar effect with no system/meter entanglement.
Recommended Citation
Jordan, A.N., Tollaksen, J., Troupe, J.E., Dressel, J., Aharonov, Y., 2015. Heisenberg scaling with weak measurement: a quantum state discrimination point of view. Quantum Studies: Mathematics and Foundations 2, 5–15. doi:10.1007/s40509-015-0036-8
Peer Reviewed
1
Copyright
Springer
Comments
This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Quantum Studies: Mathematics and Foundations, volume 2, in 2015following peer review. The final publication is available at Springer via http://dx.doi.org/10.1007/s40509-015-0036-8.